Modeling and simulation of underwater high frequency noise spectrum using artificial neural networks
نویسندگان
چکیده
In this work, estimation of high frequency underwater ambient noise spectrum carried out using neural network is reported. The periodic ambient noise data were measured at 5 m depth in Bay of Bengal using omni directional hydrophone. The data were acquired using portable, broadband high frequency data acquisition system. The noise level at high frequencies in the range of 5 kHz to 12 kHz was analyzed for the entire data set (N=100). The influence of wind speed covering a rage of 2.5 m/s to 9 m/s and wave height in the range of 0.2 m to 2 m were used for the analysis. Feed Forward Neural Network architecture using LevenbergMarquardt (LM) algorithm was employed and the network model obtained after training was used to estimate the noise level. Analysis of experimental data reveals that the noise level decreases with increase in frequency for the observed range of frequencies. The noise level increases with increase in wind speed and the variations were found to be non linear in nature. Similar observation was recorded for the considered range of wave height. Further it appears that the proposed method is useful in the estimation and interpolation of underwater Noise Spectrum Level (NSL) for the considered frequency range and it is observed through Mean Squared Error analysis. As the underwater measurements are often inhospitable due to the remote oceanic regions and conditions, these studies seems to be relevant. In this work, the objectives, experimental arrangement, data acquisition, neural network based modeling and analysis are presented in detail.
منابع مشابه
HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملModeling of underwater vehicle’s dynamics
The paper presents algorithm of underwater vehicle’s dynamics modeling using technique of artificial neural networks. Paper includes mathematical description of used dynamical neurons and basis of its learning process. Next the results of research for real underwater vehicle were presented. Key-Words: artificial neural networks, dynamics modeling, underwater vehicles
متن کاملImproving Data-based Wind Turbine Using Measured Data Foggy Method
The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کامل